Multiplication Calculation Policy

Early Years

Children first start to look at the idea of equal groups through their exploration of doubles. They use five frames and objects to check that groups are equal.

Vocab for multiplication: groups of, lots of, equal, not equal

	Steps in learning for Multiplication	Explanatory note
Sorting and making groups	Children sort everyday objects in groups and match items that are the same.	Children develop their understanding of 'groups'. Children will tidy and sort items in to the correct boxes or pots. Children will further sort mixed objects into two groups e.g. sorting all the teddies from the cars. One to one correspondence is also key to later work when making equal groups. Children must be able to count the correct number in one group first.
Recognising doubles	Children explore doubles in their environment including in games such as on groups.	inoes or dice. They focus on the understanding of doubles being two equal
Making 2 equal groups and finding doubles	Children use objects such as five frames, counters, numicon and fingers to make equal groups and find doubles. They make or show two equal groups of the same amount and then count them altogether. Double 5 Double 3	After exploring practically, children relate doubles to the addition sentences This is further reinforced with Reception Learn its $1+1=, 2+2=, 3+3=, 4+$ $4=$ and $5+5=$

	There are $2,4,6$ shoes altogether The	There are $2,4,6,8,10,12$ pennies altogether.	
Arrays	Children will find real life arrays, trays, ice cube trays, egg boxes, chocolate bars. Children understand arrays as groups of, lots of. They will be introduced to words rows and columns. They create arrays using counters and cubes to show groups of or lots of 3 lots of 5	Children use circles to draw arrays e.g. Draw 5 lots of 2 e.g. Draw 2 lots of 5	Children link arrays to repeated addition $5+5=$
Solve one step problems involving multiplication using concrete objects, pictorial representation and arrays with support from the teacher.	Practical Use practical resources to solve questions such as One bag holds 5 apples. How many apples do 4 bags hold? e.g. use Numicon, cubes etc	Jottings One bag holds 5 apples. How many apples do 4 bags hold? Make jottings to show 4 lots of 5 Or	Abstract Children use their knowledge of counting in multiples using fingers to show the number of groups One bag holds 5 apples. How many apples do 4 bags hold? - Hold up fingers to show the number of groups (4) - Count on in multiples e.g. 5

Year 2		
In Year 2 children revisit equal groups, repeated addition and arrays. They are taught the multiplication sign and explore the commutativity of multiplication through arrays. Year $\mathbf{2}$ children further their counting in 2,5 and 10 by applying this to $\mathbf{x 2 , x 5}$ and $\mathbf{x 1 0}$ multiplication tables.		
Overarching Objective: Solve multiplication problems using materials, arrays, repeated addition, mental methods and multiplication facts including problems in context		
	Concrete and practical resources	Pictorial / Jottings Abstract
Revisit equal groups and secure understanding of repeated addition	Children recognise and make equal groups using practical resources counters, cubes, numicon and real life objects. They write the groups as repeated addition sentences. They continue to use language such as groups of/ lots of For example: 3 lots of 5 $5+5+5=15$ 15 altogether	Children recognise equal groups in pictorial representations and write as repeated addition sentences. For example: $\underline{3}$ groups of/ lots of $\underline{5}$ chairs. $5+5+5=15$ 15 chairs altogether
To recognise the X sign as lots of/ groups of	Children to be taught that the X sign is groups of / lots of. Children can be given or shown practical resources first and can write the multiplication sentence to match what they see. For example:	Children are to write the multiplication fact to match the pictorial representation For example:

Calculate mathematical statements for multiplication and write them using the multiplication \mathbf{x} and equal $=$ sign.	4 lots of/ groups of 5 $\begin{aligned} & 5+5+5+5=20 \\ & 4 \times 5=20 \end{aligned}$	4 lots of/ groups of 5 $\begin{gathered} 5+5+5+5= \\ 4 \times 5=20 \end{gathered}$
Arrays Write the multiplication fact for an array Draw an array to represent the multiplication fact.	Children need to understand the relationship between arrays, repeated addition from Y 1 and multiplication. This can be done pictorially first. For example: Write the multiplication fact to match the array I can see four groups of 5 $5+5+5+5=$ $4 \times 5=$ I can see 5 groups of 5 $5 \times 5=$ Arrays $4 x^{3}$?	Children to draw an array to match a multiplication fact using jottings. - Some children may need to physically move objects and create their array using counters or cubes before drawing. Drawing using jotting/ circles This can be linked back to language used in Y 1 and help to reinforce the meaning of the multiplication symbol e.g. Draw 3 groups of/ lots of 23×2 For example: $3 \times 2=$ Children draw dots or circles to represent the array.

Understand commutativity Know that multiplication of 2 numbers can be done in any order.	Use real life arrays to visualise commutativity, physically turning the objects to look at the different groups. I can see 6 groups of 3 . I can see 3 groups of 6 .	Use pictorial representations of an array. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2 .	Use arrays to visualise commutativity and link back to children writing related repeated addition and multiplication facts. $\begin{aligned} & 4+4+4+4+4=20 \\ & 5+5+5+5=20 \\ & 4 \times 5=20 \text { and } 5 \times 4=20 \end{aligned}$
Solve multiplication problems using materials, arrays, repeated addition, mental methods and multiplication facts including problems in context	Practical Use practical resources to solve questions such as One bag holds 5 apples. How many apples do 4 bags hold? e.g. use Numicon, cubes etc	Jottings One bag holds 5 apples. How many apples do 4 bags hold?	Abstract Children use their knowledge of counting in multiples using fingers to show the number of groups One bag holds 5 apples. How many apples do 4 bags hold? - Hold up fingers to show the number of groups (4) - Count on in multiples e.g. 5
Recall and use multiplication facts for the 2, 5 and 10. multiplication tables	All the work above will help children to develop an under hundred square work should also aid their understanding speed of recall. Children will make connections between the five times ta notice the pattern in the ten times table- the ones are al	f how to unitise groups of 2,5 and 10 and learn times e times tables increase and contain patterns. Daily cha unting in 5 s on the clock face and the two times table the tens increase by 1 ten each time.	facts. Songs, chanting and g of table facts should increase even numbers. Children will

Year 3

In Year 3 children are to be taught the expanded method of multiplication in preparation for the formal written method in Year 4. Children should begin to apply their times tables knowledge from Year 2 (2,5 and 10) and Year 3 ($3 \mathrm{~s}, 4 \mathrm{~s}$ and 8 s). The language related to the X sign will need exploration and be linked to their understanding of commutativity e.g. it is easier to work out 5 lots of 34,34 five times rather than 34 lots of 5.

Recall and use multiplication facts for the 3, 4 and 8 tables.

Children should continue to have daily practice counting in multiples. Children through doubling should connect the $x 2, x 4$ and $x 8$ tables

Children can also explore patterns in the three times table noticing the odd, even, odd, even pattern

Mental multiplication	Children explore the relationship between known times-tables and multiples of ten using base ten.
Using known facts to	For example: Make 4 groups of 3 ones
calculate other facts for example to multiply	
10s/scale	Make four groups of 3 tens
numbers by	
ten	
$3 \times 40=$	边
$30 \times 2=$	$4 \times 3=12$ and $4 \times 30=120$

Children learn how unitising 10s supports

multiplying by multiples of 10 / scaling by ten.

2 lots of 4 ones is 8 ones 2 lots of 4 tens is 8 tens

$$
2 \times 4=8
$$

$$
2 \times 40=80
$$

Children apply their knowledge of commutativity and scaling to derive other facts/ fact family work
e.g. I know $4 \times 3=12$ so $3 \times 4=12$
$4 \times 30=120$ and $40 \times 3=120$

Year 4

When moving to three digits multiplied by one digit children should be encouraged to move from the expanded method taught in Year 3 towards a short, formal method. The aim is to secure the short, written method over the course of Year 4. Times tables are also a big focus in this year group and children should be able to recall multiplication facts up to 12×12 speedily by the end of the year.

Multiply 2

 digit and 3 digit numbers by one digit numbers using a formal written layout* By end of Year 4 most children should be secure using the formal written method for multiplication.

Base ten can once again support children's understanding of the written method.
e.g. $245 \times 4=$ four lots of $245 \quad 245$ four times

It may also be useful for children to be shown the expanded method of multiplication for three digits x one digit first. They can relate this to the work that they did in Year 3 and teaching links can be made to the short, formal method.

Start introducing the short formal written method. Begin without any exchanges and then exchange through the ones, then tens. If children are multiplying larger numbers and struggling with times tables encourage the use of multiplication grids so that children can focus on the use of the written method.

Multiply together three numbers

Multiply three digit numbers by two digits	In preparation explore the grid children are cal to work out the	formal writ od first to g the ans first (bot 200 6,000	en metho d their und rs within m row firs 30 900	Idren can tanding. When grid, teach them	Th H 2 \times 4 1^{7} 10 7 4	T 3 3 6 2 8	0 4 2 8 8 8			43) $243)$
Multiply numbers mentally drawing upon known facts					Use known whole numb Answer que Work out 3	acts ers by tions $4=$	multip n and ch as: 3×4	scal	10.01	ultiplying
Multiply whole numbers by 10, 100 and 1000	Children will use place value grids to understand how the digits move and change when multiplying by 10,100 and 1,000 . They will understand 0 as a place holder.$\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$					Child \square	wor 365 432 1230	answ	such a $\begin{array}{r} \times 100 \\ \hline \end{array}$	$\text { x } 1000$

When multiplying four digits by a two digit number children should be very confident using the formal written method. If they are still struggling with times tables then provide multiplication grids so that they can focus on the written method.

Multiply one digit numbers up to 2 decimals places by whole numbers		Use formal written method. For example:

